
Application of Cortical Processing Theory to Acoustical Analysis
AFRL-SR-AR-TR-0 7-0 5 2 3

kfirt Approved
REPORT DOCUMENTATION PAGE OM8 No. 0104-0188

Otopt U, 9 b,lden tt, t Io mn- al t- ma,ro a I mt t ad ltofto a, 1g .IO naQ Do, teC ln-d tq 1.lC a -r nqt -1,10 .II1 7 d;:1 -Qt -O i IA d. 3 Itti I -

oMo n"1 1a rantt -so te data Toadad In.rdta no o-dt, aot -a att ' i t d - -l t" e at nam a a tarT, o . &ond ra,-atil 'aaoa' ti 00 Uar e o l roe a Di. Ore n of Iln -ct -,1

W't.i-M.It on ! n a Uqt T -g. n04CI " b non, itt ei t r tdt t UoP.:rt t at Dter, W ta 101 tO t Dt, -OT W-3lOtii In- OMIT-ra U Ia-O 01 Att ft-13
10 4 04MO81 121 Ji l lt t o Vatti *tott.ao, . to 12(4. A4 qut, VA 22202 4302, i oottt ni t t It 1 , 11010 tsaitt ae - , Il nal- td1 on , vl 00. w -I1 - 11, ; a,
st-VI-t to patW o Iw tl to, l t ro n-P' t- t an .i It cO-Tatn t I das wl dso a aa n-ll v va dO i-n o o -tI d'.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (00-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED bFrwn - 1)

07/27/2004 FINAL PROGRESS REPORT 0410112005 - 06/30/2007

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

APPLICATION OF CORTICAL PROCESSING THEORY TO FA9550-05-C-0032
ACOUSTICAL ANALYSIS Sb. GRANT NUMBER

N/A
5c. PROGRAM ELEMENT NUMBER

N/A

6. AUTHORIS) 5d. PROJECT NUMBER

GHrTA., ODED N/A
5e. TASK NUMBER

N/A

St. WORK UNIT NUMBER

N/A

7. PERFORMING ORGANIZATION NAMEISI AND ADDRESSES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

SENSIMETRICS CORPORATION
48 GROVE STREET - SUITE 305
SOMERVILLE, MA 02144-250

9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESSIES) 10. SPONSORMONITOR'S ACRONYM(S)

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH AFOSR
975 NORTH RANDOLPH STREET ROOM 3112
ARLINGTON, VA 22203 11. SPONSORIMONITOR'S REPORT

t4/- AkU&d " nk =NUMBERIS)N/

12. DISTRIBUTIONIAVAILABILITY STATEMENT

N/A
Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

We developed a computational model of diphone perception based on salient properties of peripheral and central auditory processing. The model
comriss a eferet-ispredcloed-oopmodl o te aditry esihet (PM)conniected to a template-malix circuit (rMC). Robustness

aganstbackgrnd seispovidedincipallybythePAM. whileinsentityto time-scale variations is pTMC. We demonstrated
that fo synthetc DRT w -prs in ise the model capabe of pn~ ~nr patterns alng the acoustic-phonetic features. We showed
that with a closed-loop PAM a place/rate model of cetrl processg is sufficient to predict human performance in discriminating speech stim uh in
the presence of noise. This result is in conast to the currt notiot based upon feed-forward modeh. which sggests that a temporal (place at
nn-place) strategy is necessary in order to aunt fo the robut human p in noise. Towards a geeralization to naturally spoken speech

we ae sudyng ThC inpird b prnciles f crtial eurnal rocssig, itha Samnma ihsythm at its core. It falls short when applied to the
task recognizing natural speech, however we demonstrate that ebts such as tim-scali insensitivity, consistent with (and
desirable for) perception of spoken languae.

lB. SUBJECT TERMS

Models of auditory peniphery; Models of descending auditory pathways, Models of the MOC efferent system; Neural computation approach to
modeling post auditory nerve processing; Template matching; Phone discrimnation; Phone identification; Diagnostic assessment of speech
intelligibility; Front-end for automatic speech recogitiona

16. SECURITY CLASSIFICATION OF: 17- LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF DR. ODED GHrTZA
PAGES

19b. TELEPHONE NUMBER owCuI* ,#a1 cow,

617-625-0600 X239
Standard Foom 298 (Hey 8,981
V- hi>ind It AIlS StO !'-49 *I



Application of Cortical Processing Theory to Acoustical Analysis Ghitza (PI)

EXECUTIVE SUMMARY
We developed a computational model of diphone perception based on salient properties of
peripheral and central auditory processing. The model comprises an efferent-inspired closed-loop
model of the auditory periphery (PAM) connected to a template-matching circuit (TMC).
Robustness against background noise is provided principally by the signal processing performed
by the PAM, while insensitivity to time-scale variations is provided by properties of the TMC. The
PAM parameters were determined in isolation from the TMC. This was achieved by analyzing
confusion patterns generated in a paradigm with a minimal cognitive load (the binary Diagnostic
Rhyme Test [DRT], with synthetic speech stimuli to restrict phonemic variation). Originally, we
intended to test the model by quantifying its ability to predict human performance in perceiving
naturally spoken speech in the presence of noise, in two separate tasks: (1) diphone discrimination
of minimal word-pairs (Voiers' DRT), and (2) phone identification of schwa-CVC tokens. Eventually,
the model was evaluated using synthetic speech material.

• Accomplishments:
1. For the diphone discrimination task and for the phone identification task we have created a

synthetic version of the speech material (DRT word-pairs and schwa-CVC tokens, respectively).
Compared to the naturally spoken stimuli, the synthetic stimuli are with restricted phonemic
variations, allowing a better PAM-TMC separation.

2. For the diphone discrimination task and for the phone identification task we have completed
collecting human-performance data for the synthetic and for the naturally spoken stimuli in
noise, using speech-shape noise at three SPL intensities (70, 60 and 50dB) and at three SNRs
(10, 5 and 0dB).

3. We demonstrated that, for synthetic DRT word-pairs in noise, the model is capable of predicting
both the mean performance and the patterns of errors in the human data.

4. We showed that with an efferent-inspired closed-loop model of the cochlea, a place/rate model
of central processing is sufficient to predict human performance in discriminating speech stimuli
in the presence of noise. This result is in contrast to the current notion based upon feed-forward
models, which suggests that a temporal (place or non-place) strategy is necessary in order to
account for the robust human performance in noise.

5. To generalize these results to naturally spoken tokens, i.e. tokens that inherently exhibit
phonemic variability, we have been studying a template matching circuit that is insensitive to
time-scale variations of the input stimuli. We chose to study a template matching circuit (TMC)
inspired by principles of cortical neuronal processing, with a gamma rhythm at its core. In its
current form the circuit falls short when applied to the task of recognizing naturally spoken
speech, however we demonstrate that it exhibits properties, such as time-scaling insensitivity,
consistent with (and desirable for) perception of spoken language.

6. For the phone identification task we evaluated four models of frequency-band integration in two
experiments on the identification of schwa-CVC syllables. All of the models considered make
predictions based on observed confusion matrices. One experiment tested the ability to
integrate cues for speech sounds presented in low- and high-frequency bands of speech. The
other experiment tested the ability to identify speech sounds presented at different signal to
noise ratios. The results of the first experiment are encouraging in terms of the relation of data
to model predictions. The results of the second experiment are far less encouraging in terms of
the ability of the models to predict dependence of overall scores on signal to noise ratio.

• Ph.D. dissertation:
1. Messing, D. (2007). Predicting Confusions and Intelligibility of Noisy Speech. Thesis advisors:

L. Braida and 0. Ghitza. Department of Electrical Engineering, MIT.

20071226033
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1. INTRODUCTION
The work described here arose from the need to understand and predict speech confusions
caused by acoustic interference and by hearing impairment. Current predictors of speech
intelligibility are inadequate for making such predictions (even for normal-hearing listeners). The
Articulation Index, and related measures, STI and SII, are geared to predicting speech intelligibility.
But such measures only predict average intelligibility, not error patterns, and they make predictions
for a limited set of acoustic conditions (linear filtering, additive noise, reverberation).

We aim at predicting consonant confusions made by normally-hearing listeners, listening to
degraded speech. Our prediction engine comprises an efferent-inspired peripheral auditory model
(PAM) connected to a template-match circuit (TMC). Figure 1 shows a block diagram of the model.
We hypothesize that robustness against background noise is provided principally by the signal
processing performed by the peripheral circuitry, while insensitivity to time-scale variations is
provided by properties of the template-matching circuitry. The extent to which this model is an
accurate description of auditory perception is measured within the context of perceiving minimal
word pairs (differing in their initial consonant) in the presence of additive, speech-shaped noise. In
Section 2 we describe the PAM, a closed-loop model of the auditory periphery that comprises a
nonlinear model of the cochlea with efferent-inspired feedback. The PAM parameters were
determined in isolation from the TMC. This was achieved by analyzing confusion patterns
generated in a paradigm with a minimal cognitive load (Voiers' Diagnostic Rhyme Test [DRT] [17],
with synthetic speech stimuli to restrict phonemic variation). In Section 3, we describe initial steps
towards predicting confusions of naturally spoken diphones (i.e. material that exhibits inherent
phonemic variability). We describe a TMC inspired by principles of cortical neural processing, with
a gamma rhythm at its core (Hopfield, [12]). A desirable property of the circuit is insensitivity to
time-scale variations of the input stimuli, a property essential for recognizing phonetic entities that
are inherently variable in time and spectrum. In its current form the circuit falls short when applied
to the task of recognizing naturally spoken speech, however we demonstrate that it exhibits
properties, such as time-scaling insensitivity, consistent with (and desirable for) perception of
spoken language. In Section 4 we describe an effort to evaluate four models of frequency-band
integration in two experiments on the identification of schwa-CVC syllables. All of the models
considered make predictions based on observed confusion matrices. One experiment tested the
ability to integrate cues for speech sounds presented in low- and high-frequency bands of speech.
The other experiment tested the ability to identify speech sounds presented at different signal to
noise ratios. The results of the first experiment are encouraging in terms of the relation of data to
model predictions. The results of the second experiment are far less encouraging in terms of the
ability of the models to predict dependence of overall scores on signal to noise ratio.

2. PERIPHERAL AUDITORY MODEL (PAM)
2.1 Background
A reasonable, axiomatic assumption is that information in the auditory nerve is the only information
available to the central nervous system (CNS) about acoustic input. While human performance in
adverse conditions deteriorates only modestly, simulated AN representations of corrupted speech
signals - generated by state-of-the-art auditory models - are markedly different from those
associated with clean speech signals. For example, for speech in a typically reverberant room,
there is only a slight deterioration of intelligibility (albeit with a noticeable degradation in quality)
while the acoustic signature of the phonemic features in the simulated AN representations is
severely compromised. Is this contrast a result of the incompleteness of current models of auditory
processing?

Numerous papers have been published that examine how the response of the cochlea may be
processed to provide a relevant representation of the speech signal. Each study utilizes a
computational model to simulate either the direct firing activity or another related representation of
the cochlear output. The manner in which this information is processed differs among the studies,
reflecting differences in the structural properties of the central processor hypothesized by each
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study. These structural properties can be cataloged using the following three categories: (1)
place/rate category, where the central processor possesses explicit knowledge of place (i.e. the
fibers' tonotopic place of origin in the cochlear partition) but uses only short-term rate information of
the neural firings, over a prescribed time window, (2) place/temporal category, where place
information is used together with detailed temporal information of local neural responses (i.e.
higher-order firing statistics, like the interspike interval statistics), and (3) non-placetemporal
category, where place information is omitted altogether and the only sources of information are the
temporal properties of the global neural response (for an excellent overview of auditory models the
reader is referred to [9]). These models of auditory periphery are feed-forward models, based on
our understanding of the ascending auditory pathway up through the auditory nerve. A rigorous
study of the capabilities of these models to reliably represent speech signals in a variety of
acoustic conditions (e.g., different sound intensities, and presence of background noise) reached
the widely accepted notion that place/rate models are insufficient, and that (at least) some degree
of temporal information is required.

One auditory mechanism that may play a role in the robustness of the auditory periphery in the
presence of background noise is the medial olivocochlear (MOC) efferent feedback system.
Numerous studies have been published providing detailed morphological and neurophysiological
description of the system (e.g. Guinan [10]), as well as psychophysical accounts for its effect on
the sensory representation of signals embedded in noise. MOC efferents originate from neurons in
the medial superior olivary nucleus (MSO) and terminate directly on outer hair cells (OHC). They
have tuning curves similar to, or slightly broader than those of AN fibers (e.g. Guinan [10]), and
they project to different places along the cochlear partition in a tonotopic manner. We currently do
not have a clear understanding of the functional role of this mechanism. One speculated role,
which is of particular interest for the current study, is a dynamic regulation of the cochlear
operating point that depends on background acoustic stimulation and which results in robust
human performance in perceiving speech in a noisy background. There are a few
neurophysiologcal studies consistent with this hypothesis. Using anesthetized cats with noisy
acoustic stimuli, Winslow and Sachs showed that by stimulating the MOC nerve bundle electrically,
the dynamic range of discharge rate at the AN is partially recovered, [18]. Measuring neural
responses of awake cats to noisy acoustic stimuli, May and Sachs showed that the dynamic range
of discharge rate in cochlear-nucleus neurons is only moderately affected by changes in levels of
background noise, [15]. Finally, a few behavioral studies indicate the potential role of the MOC
efferent system in perceiving speech in the presence of background noise. Dewson presented
evidence that MOC lesions impair monkeys' ability to discriminate between the vowels [i] and [u] in
the presence of masking noise, but have no effect on performance in quiet, [4]. More recently,
Giraud et al. ([10]) and Zeng et al. ([19]) showed, albeit inconclusively, that the performance of
humans with severed MOC feedback results in relatively poor phoneme perception when the
speech is presented in a noisy background.

2.2 Efferent-inspired closed-loop model of the auditory periphery
Inspired by this evidence we have developed a closed-loop model of the auditory periphery (i.e.
PAM) which uses feedback to regulate the operating point of a model of cochlear mechanics,
resulting in an auditory nerve representation less sensitive to changes in environmental conditions.
In implementing the PAM we use a bank of overlapping cochlear channels uniformly distributed
along the ERB (equivalent rectangular bandwidth) scale, four channels per ERB. Each cochlear
channel comprises a nonlinear filter and a generic model of the inner hair cell (IHC) - half-wave
rectification followed by low-pass filtering, representing the reduction of neural synchrony with AN
fiber characteristic frequency (CF). The dynamic range of the simulated IHC response is restricted
to a dynamic-range window (DRW), representing the observed dynamic range at the AN level. The
simulated IHC response (representing instantaneous firing rate at the AN) is smoothed temporally
(temporal time integration over a 10-ms window), resulting in a short-term average-rate
representation. (See Fig. 2.)
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The cochlear filter is Goldstein's MBPNL model of nonlinear cochlear mechanics, [7]. This
model operates in the time domain and changes its gain and bandwidth with changes in the input
intensity, in accordance with observed physiological and psychophysical behavior. The model is
shown in Fig. 3. The lower path (H1 /H2) is a compressive nonlinear filter that represents the
sensitive, narrowband nonlinearity at the tip of the basilar membrane tuning curves. The upper
path (H3/H2) is a linear filter that represents the insensitive, broad-band linear tail response of
basilar-membrane tuning curves. A parameter GAIN controls the gain of the tip of the basilar
membrane tuning curves. To best mimic psychophysical tuning curves of a healthy cochlea in
quiet, the tip gain is set to GAIN=40dB [7]. The "iso-input" frequency response of an MBPNL filter
at CF of 3400Hz is shown in Fig. 4, upper-left panel.

As for the efferent-inspired part of the model we mimic the effect of the medial olivocochlear
efferent path (MOC). Recall that morphologically, MOC neurons project to different places along
the cochlear partition in a tonotopic manner, making synapse connections to the outer hair cells
and hence affecting the mechanical properties of the cochlea (e.g. increasing basilar membrane
stiffness). Therefore, we introduce a frequency-dependent feedback mechanism, which controls
the tip-gain of each MBPNL channel, permitting a prescribed intensity level of the sustained noise
inside the DRW.

Figure 5 shows - in terms of a spectrogram - simulated IHC responses to diphoneJe (as in
"jab") in two noise conditions (70 dB SPL /10 dB SNR and 50 dB SPL /10 dB SNR), for an open-
loop MBPNL-based system (left-hand side) and for the closed-loop system (right-hand side). Due
to the nature of the noise-responsive feedback, the closed-loop system produces spectrograms
that fluctuate less with changes in noise intensity compared to spectrograms produced by the
open-loop system. This property is desirable for stabilizing the performance of template matching
under varying noise conditions, as reflected in the quantitative evaluation reported in Section 2.3.

2.3 Quantitative evaluation - isolating PAM from TMC
The evaluation system comprises a PAM followed by a TMC. Ideally, to eliminate PAM-TMC
interaction, errors due to template matching should be reduced to zero (i.e. ideal template-
matching). In reality we could only minimize interaction. This was achieved by taking the following
three steps: (1) we use the simplest possible psychophysical task in the context of speech
perception, namely a binary discrimination test. In particular, we use Voiers' DRT ([17]) which
presents the subject with a two alternative forced choice between two alternative CVC words that
differ in their initial consonants. Such task minimizes the influence of cognitive and memory factors
while maintaining the complex acoustic cues that differentiate initial diphones (recall the central
role of diphones in speech perception, e.g. Ghitza, [5]); (2) we use the DRT paradigm with
synthetic speech stimuli. An acoustic realization of the DRT word-pairs was synthesized so that the
target values for the formants of the vowel in a word-pair are identical, restricting stimulus
differences to the initial diphones; and (3) we use a "frozen speech" methodology (e.g. Hant and
Alwan, [11]), namely, the same acoustic speech token is being used for training and for testing, so
that testing tokens differs from training tokens only by the acoustic distortion.

These three steps presumably result in a reduction in the number of errors induced by the
template matching. Recall that a template-match operation comprises measuring the distance of
the unknown token to the templates, and labeling the unknown token as the template with the
smaller distance. Hence, template matching is defined by the distance measure and the choice of
templates. As a distance measure we use the minimum mean squares error. This is an effective
choice here because: (1) by using synthetic speech stimuli, the identical target values of the vowel
formants for the two words results in zero error in time-frequency cells associated with the final
diphone, and (2) by using frozen-speech stimuli, a distortion in a given time-frequency cell is
generated locally (by noise component within the range of the cell) and is independent of noise at
other cells. Thus, with such constraints it was reasonable to use a template-matching operation
with a minimum mean squares error as the distance measure, allowing us to focus on errors
attributed to the PAM alone.
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Formal DRT sessions using human subjects have been conducted using the synthetic stimuli in
quiet and in additive, speech-shaped noise at three levels (50, 60 and 70 dB SPL) and at three
SNRs (0, 5 and 10 dB). The psychophysical experiments are described in detail in Appendix A.
Fig. 6 shows the errors produced by a DRT mimic with open-loop and closed-loop PAMs,
compared to those made by human listeners. Figure 6.a shows performance averaged over all
SPL and SNR conditions. (Figures 6.b and 6.c detail the performance as per SPLxSNR condition.)
Signal conditions were the same as those used to collect the human data. Templates were created
for the 60 dB SPL / 5 dB SNR condition. The abscissa marks the Jakobsonian dimensions:
Voicing, Nasality, Sustention, Sibilation, Graveness and Compactness (denoted VC, NS, ST, SB,
GV and CM, respectively). The "+' sign stands for an attribute being present and the -" sign for an
attribute being absent. Bars show the difference between the average machine and human scores.
The red "boxes" indicate plus and minus one standard deviation of the human data. Gray bars
indicate that the difference is greater than one standard deviation of the human data. Scores with
the open-loop PAM are worse than those of the human scores. Scores with the closed-loop PAM
are similar to human scores except for VC- and ST-. Two points are noteworthy. First, when a
sever mismatch occurs, closed-loop scores are superior to human scores while open-loop scores
are worse. Hence, improving the open-loop system will require the exploitation of information
beyond short-term rate (i.e. temporal). Second, although we predicted human performance in a
binary task, parameters of the model were tuned to match errors between minimal pairs, jointly
along all Jakobsonian dimensions. Hence we believe that the spectro-temporal patterns generated
by the resulting closed-loop PAM are an adequate description of the sensory representation of
degraded speech.

3. THE TEMPLATE MATCHING CIRCUIT (TMC)
In developing the PAM (Section 2) we used synthetic speech stimuli, with restricted phonemic
variation, hence permitting the use of a minimum mean squares error as the distance measure for
template matching. In this section we consider naturally spoken speech stimuli, seeking a
perceptually relevant distortion measure between speech tokens that exhibit phonemic variability.

3.1 Why use models of neural computation?
In some sense speech decoding can be conceptualized as a search process, in which the search
engine performs a template-matching operation comprised of two separate, but related steps. The
first measures the distance between the current input (e.g. a syllable) and (stored) templates. The
second associates the input with the best-matching template. In this sense, template matching is
defined by the choice of templates as well as a distance metric. To develop algorithms capable of
emulating human performance we first need to create accurate, detailed models for both stages of
the search process. An explicit, analytical expression is difficult to derive for such models. Instead,
we seek to emulate neural computation principles that are general in nature and shared across
sensory (e.g. auditory, visual, olfactory) and motor modalities. We suggest that a template-
matching operation based on a plausible model of pertinent neural computation may implicitly
incorporate characteristics essential for both the templates and the distance metric. Next we
describe a specific template-matching circuit inspired by principles of cortical neural processing,
with a gamma rhythm at the core (Hopfield, [12]). This oscillation feeds into all input neurons,
serving as a synchronizing pacemaker.

3.2 Model description
A block diagram of the TMC is shown in Figure 7. It comprises three stages: (1) a front-end, (2) a
layer of "Integrate and Fire" (IAF) neurons (Layer-I neurons) and (3) a layer of coincidence-detector
neurons (Layer-Il neurons). The front-end is a filter bank with 26 critical-band filters spanning the
tonotopic range of the speech spectrum (0.1 - 8 kHz). Each neuron in Layer-I is characterized by
the equation:

du(t)/dt + u(t)/RC = i(t)/C - Vrest/RC (1)
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where i(t) is the input current, u(t) the output voltage, Vrest is the resting potential and RC is the
time constant of the circuit. Once u(t) reaches a threshold value the neuron fires and u(t) is
shunted to zero. The parameters of all Layer-I neurons are identical except for the threshold-of-
firing. All Layer-I neurons are driven by a single global sub-threshold oscillatory current Aycos wy t.
In terms of Eq. (1), the input current to the n-th IAF cell is:

i(t) = x,(t)+Aycos wy, t (2)

where x,(t) is the output of the n-th cochlear channel. In our realization, RC = 20 ms and the
frequency of the gamma oscillator is 25 Hz. Each channel drives 100 Layer-I neurons, which differ
only in their firing threshold. In our realization, the number of Layer-I neurons is M = 26 x 100 =
2600. The final stage comprises N = 6000 Layer-II coincidence neurons. All Layer-Il neurons are
driven by K=6 randomly selected "patches" of Layer-I neurons. Each patch is composed of L=10
Layer-I neurons with successive thresholds - all driven by the same frequency channel.

The computational principle realized by the circuit is as follows. A given Layer-Il neuron fires at
time to if and only if all K Layer-I patches fire simultaneously at time to. Moreover, a patch of Layer-I
neurons fires at time to only if the time evolution of the corresponding frequency channel prior to
that time drives one of the L neurons in the patch to its threshold precisely at time to. Hence, each
Layer-Il neuron is "tuned" to a particular time-frequency template expressed in terms of the time
evolution of K frequency channels. The same Layer-Il neuron will also fire, albeit in a delayed time,
if the output signal of all K channels is scaled by the same factor (this is so because all
corresponding Layer-I neurons reach threshold with a similar time delay).

This TMC has some interesting properties germane to speech processing and decoding. As
illustrated in Section 3.3.2 syllable-initial diphones (i.e. consonant-vowel, CV syllables) may be
identified more accurately than their syllable-final (i.e. coda, VC) counterparts. This property is
consistent with both linguistic perception and with statistical analyses of conversational corpora
where spectro-temporal variability of coda consonants is far greater than their consonantal
counterparts in syllable onsets (Greenberg, [8]). Moreover, variation in speaking rate has relatively
little impact on its performance since the TMC is insensitive to time-scale variation (consistent with
Hopfield's original formulation). Such time-scale insensitivity (e.g. to variation in speaking rate) is
essential for recognizing phonetic entities that are inherently variable in time and spectrum. These
are the sort of properties that characterize human speech comprehension and which could prove
useful for many technical applications in speech recognition, synthesis and auditory prostheses.

3.3 Illustrative Examples
3.3.1 TMC response in a simple syllable-discrimination task
Figure 8 illustrates the behavior of the TMC in a simple syllable-discrimination task. Assume that
we have identified 40 Layer-I neurons that are most sensitive to the time-frequency signature of
the initial diphone of the word "daunt." Similarly, we have identified 140 neurons for the word
"taunt." We term these sets of cells "State-i" and "State-2" neurons, respectively. The two upper-
left panels show a spectrographic display of the front-end in response to the first 350 ms of two
different realizations of the word daunt spoken by a single speaker (note the phonetic variability).
Below each spectrogram is a time-histogram of the number of state neurons responding to the
corresponding stimulus (shown is the pertinent fraction out of 40). The lower-right four panels show
the analogous display for the response of State-2 neurons to the word taunt. The lower-left (and
the upper-right) panels show the response of the neurons to the other word. The response to
stimuli matched to the state neurons peaks at a time-instance associated with the end-time of the
initial diphone. For stimuli of the other token there is a relatively small response.

3.3.2 Response of a single frequency channel to a DC input
We used an array of 100 Layer-I neurons as specified in Equation (1). The parameters of all
neurons were identical except for their firing thresold. The 100 threshold levels were equally
distributed over a pre-specified range. All Layer-I neurons were driven by a single, sub-threshold,
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25-Hz oscillatory current. The values of all parameters were normalized with respect to the resting
potential of the neuron [Vrest of Eq. (1)]. These parameters include (i) the dynamic range of the
input signal [i(t) in Eq. (1)], (ii) the amplitude of the gamma oscillator [Ay of Eq. (1)], (iii) the
threshold-of-firing pre-specified range. For every measurement point we recorded how the firing
patterns of the 100 neurons change as a function of the input current. Figure 9 illustrates the kinds
of recording collected (see the figure legend for details).

3.3.3 Response of an array of 100 Layer-I neurons to a saw-tooth
Figure 4 illustrates the response of an array of 100 Layer-I neurons to an asymmetric saw-tooth
input current, over a range of "symmetry" coefficients. These coefficients pertain to how fast (or
slow) the current rises in time, which has a significant impact on the temporal distribution of
neuronal spikes evoked by supra-threshold signals. Neurons are the same as those described in
Section 3.3.2. The rationale for using a saw-tooth input is as follows. Recall that the input current to
a Layer-I neuron is a narrow-band signal (e.g. the output of an auditory channel). For a consonant-
vowel syllable the temporal evolution of the energy at the output of a particular channel resembles
a saw-tooth function (as a spectral peak moves through the frequency band). See Figure 10 for
additional details.

The asymmetrical response shown in Fig. 10 highlights an important corollary of this modeling
approach. Sharply rising input waveforms are associated with a more precise correspondence
between input signal and neural spikes. For rapidly changing spectra (as is common in speech)
this means that there's a tighter temporal correspondence between the dynamic aspects of the
signal and its representation in the cortex.

4. PHONE IDENTIFICATION
We evaluated several models of frequency-band integration in two experiments on the
identification of schwa-CVC syllables. All of the models considered make predictions based on
observed confusion matrices. One experiment tested the ability to integrate cues for speech
sounds presented in low- and high-frequency bands of speech. The other experiment tested the
ability to identify speech sounds presented at different signal to noise ratios.

4.1 Materials
Both natural and synthetic CVC syllables were used. The natural CVC materials (Lippmann et al.,
[14]) were recorded by one male and one female talker. The vowels were the three cardinal vowels
plus their unstressed cognates. There were 12 consonants, /p, t, k, b, d, g, s, sh, v, h, z, voiced th,
unvoiced th/. Materials were low-pass filtered at 9 kHz then converted to 12 bit digital samples at a
sample rate of 20 kHz. The mean durations of the syllables spoken by each of the two talkers were
634 and 574 ms. Synthetic analogs of each of the items were produced by HLSyn, a modification
of the Klatt synthesizer that was developed by Sensimetrics Corporation. There were 840 items in
each of the natural and synthetic sets of the test syllables.

The initial and final consonants for a CVC token were independently drawn with probability 1/12
from the set of 12 consonants, allowing for duplications of CVCs (one male and one female token)
and omissions. Each CVC stimulus was presented a total of roughly 70 times to each listener
under each condition. Thus there were a total of 840 total stimulus presentations under each
condition.

For presentation, the CVC materials were downsampled to a bandwidth of 5000 Hz. All filtering
was performed by linear-phase FIR filters with transition region widths were 50 Hz, with out-of-
band attenuations of 80 dB. All stimuli were presented binaurally at 60 dB SPL.

4.2 Human performance (see also Appendix B.)
Listeners
The listeners in all experiments were young adults with clinically normal hearing (thresholds better
than 20 dB HL at audiometric test frequencies from 200 to 8000 Hz). In both Experiments I and II
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there were four listeners (L1, L2, L4 were female and L3 male). Two of the listeners responded to
the natural stimuli and the other two to the synthetic stimuli.

Experiments
Experiment I was intended to investigate the ability of listeners to integrate cues for consonants
from two, relatively wide, bands of speech. In Experiment I, materials were filtered into bands 0-
2100 Hz. (L) and 2100-4500 Hz. (H) and their sum (B). All materials were presented at 60 dB SPL
at a wideband SNR of +5 dB.

Experiment II was intended to investigate the ability of listeners to identify consonants as a
function of signal to noise ratio. In Experiment II, materials were filtered into 0-4500 HZ (B) and
presented at 60 dB SPL at SNRs of +11, +5, and -1 dB.

4.3 Data Analysis
The data from the two experiments were analyzed by constructing confusion matrices for each
listener and each filtering and presentation condition, averaged over testing run and vowel. Data
were analyzed separately for initial and final consonants and vowels, by averaging over the
presentations of each of these groups of speech sounds. These matrices were then analyzed to
determine an overall percentage of correct responses.

4.4 Integration Models
All of the models considered make predictions based on observed confusion matrices. Let
Pk(Rj]Si) denote the probability that response Rj is made when the stimulus Si is presented via
band K and Pk(RIS) denote the confusion matrix for band K. In all cases we use the relative
frequency of observing response Rj when stimulus Si is presented to estimate P(Rj1Si). Given the
confusion matrices for bands K and L, the models make predictions for the confusion matrix when
these bands are presented simultaneously, Pkl(RIS). We estimate the predicted probability of a
correct response in the combined-band condition as Ckl.

We compared predictions of probability of a correct response in the combined-band condition
using four integration models:
1) According to the Multiplicative Probability of Error model (MPE - Fletcher) a response error is

made in the combined-band condition if and only if an error is made in each of the component
band conditions. Rather than apply this prediction to overall scores, we applied it separately to
each of the stimuli to be identified.

2) According to the Post-Labelling Integration Model (PostL) the listener is assumed to make
separate identification judgments about the stimulus based on the cues available in each band,
and to combine these judgments to determine the response to the multiband stimulus.

3) According to the Fuzzy Logic Model of Perception (FLMP - Cohen and Massaro, [3]), the
response to each stimulus is determined, in a probabilistic fashion, by the "feature value" of that
stimulus for each of the possible responses. In single-band presentations the feature value is
estimated as the conditional probability, Pk(Rj]Si). In multiband conditions, the feature value is
assumed to be proportional to the product of the feature values for the corresponding unimodal
conditions (Cohen and Massaro, [3]).

4) According to the Pre-Labelling Integration Model (PreL - Braida, [2]) single-band sensory data
are assumed to be represented in continuous valued cues that are combined optimally before
labels are assigned. The statistical properties of the cues are inferred from single-band
confusion matrices using a type of multidimensional scaling (Braida, [1]). The predictions of the
Pre-Labeling Model were made in accordance with the findings of Ronan et al. ([16]).
Consonant confusion matrices were scaled in four dimensions, the vowels in three. Predictions
were made with the response centers half-way between the old response centers and the
stimulus centers.

These models can be extended to predict the effects of changing signal-to-noise ratios (SNRs) on
identification performance. When stimuli are observed twice in statistically independent noise, the

10



Application of Cortical Processing Theory to Acoustical Analysis Ghitza (P/)

effect of the noise can be reduced if the observations are combined appropriately. Under optimum
conditions, the effective SNR is improved by the square root of two (3 dB) for each doubling of the
number of observations. This can be used as the basis of model predictions. Rather than combine
two different bands, the models can be applied to combining a band with itself for each 3 dB
increase in SNR, or four times for a 6 dB increase in SNR.

4.5 Results
Table I presents the results of, and predictions for, Experiment I. Listeners LI and L2 were
presented with natural (Nat) stimuli, L3 and L4 with synthetic (Syn) stimuli. Observed scores for the
low (Obs-L), high (Obs-H), and both (Obs-B) bands are presented for final (F) and initial (I)
consonants and vowels (V). Also presented are the predicted scores for the Fuzzy Logic Model of
Perception (FLMP), the Multiplicative Probability of Error (MPE), the Post Labeling model (PostL)
and the Pre Labeling model (PreL). Finally the average error (Err. (Obs-Prd)) and root-mean-
square error (Rms Err.) are shown, both separately for natural and synthetic stimuli and overall
(OA Err. and OA Rms Err.).

Overall the results for Expefment I indicate that three of the models (FLMP, MPE, and PostL)
tended to under-predict while the PreL model over predicted results. In all cases but PostL the
average bias was less than two percentage points. Overall, the smallest rms error was produced
by the PreL (3.7 points) followed by the FLMP (4.6), MPE (5.4) and PostL (6.7) points. Similar
trends were seen for the subset of natural stimuli, although for the synthetic subset, the rms error
was considerably higher for the PreL (4.2 points) and lower for the FLMP (2.2). These results are
similar to those of Ronan et al. ([16]) for natural CVCs presented in quiet. In particular, for the
naturally produced speech sounds, for the low frequency band scores for final consonants were
lower on average than scores for initial consonants, whereas there was very little difference
between these scores for the high frequency band.

Table II presents the results of, and predictions for Experiment I1. In this case predictions of
identification scores are made from a base condition (Base, +5 or-1 dB SNR) and to an observed
condition (Obs, +11 or +5 dB SNR). We evaluated predictions for the same four integration models
(FLMP, MPE, PostL, and PreL) as for Experiment I. Overall the results for Experiment II indicate
that all of the models tended to over-predict observed scores between 5.3 (FLMP) and 9.5 (MPE)
points. This tendency for over prediction was seen for both natural and synthetic stimuli and for
both prediction types (+11/5 and 5/-1 dB SNR). Overall, rms errors were larger than those
observed in Experiment I. The smallest rms error was produced by the FLMP (7.2 points) followed
by the PreL (9.1), PostL (9.2) and MPE (11.0) points. The trends in rms error were different for the
natural and synthetic subsets of stimuli. For the natural subset, the rms error for the PreL was
lower than for the FLMP, whereas for the synthetic subset, the reverse was true.

4.6 Summary
The results of Experiment I support the encouraging findings of Ronan et al. ([16]), both in terms of
data and the relation of data to model predictions. The results of Experiment II are far less
encouraging in terms of the ability of the models to predict dependence of overall scores on signal
to noise ratio.

The experimental results have only begun to be examined. Before publication, we plan to
examine the ability of the models to predict the pattern of correct responses across phonemes in
detail. We also plan to develop computational models that make predictions based on the actual
acoustic stimuli.

!]
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Table I. Results of and Predictions for Experiment I.

Nat/Syn F/IN Lis Obs-L Obs-H Obs-B FLMP MPE PostL PreL

Nat F LI 47.5 50.4 80.6 80.7 74.1 68.6 77.1
Nat F L2 42.9 52.6 80.6 74.5 72.5 71.6 75.4

Nat I LI 66.6 53.3 88.4 88.5 84.8 81.0 87.8

Nat I L2 51.8 51.0 84.8 71.2 75.1 72.7 81.2

Nat V Li 95.3 36.7 96.7 98.3 97.8 95.4 97.0
Nat V L2 83.8 39.1 85.9 86.6 92.6 84.6 89.1

Err. (Obs-Prd) 2.9 3.3 7.2 1.6

Rms Err. 6.1 6.6 8.4 3.2

Syn F L3 22.0 32.8 45.0 43.6 48.9 45.8 48.2

Syn F L4 33.6 41.4 63.7 63.0 63.2 55.5 64.6
Syn I L3 49.2 45.0 74.9 71.8 72.4 72.0 78.1

Syn I L4 65.2 54.5 84.4 88.5 85.3 83.1 90.2

Syn V L3 92.3 49.4 89.2 88.2 97.6 94.8 96.2

Syn V L4 96.7 64.7 99.5 99.5 99.1 98.1 99.5

Err. (Obs-Prd) 0.3 -1.6 1.2 -3.4

Rms Err. 2.2 4.0 4.3 4.2

OA Err. 1.6 0.9 4.2 -0.9

OA Rms Err. 4.6 5.4 6.7 3.7
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Table II. Results of and Predictions for Experiment II.

Prediction Nat/Syn F/I/V Lis Base Obs FLMP MPE PostL PreL

+11 from +6 Nat F LI 80.6 86.7 97.3 98.8 94.8 89.3

+11 from +6 Nat F L2 80.6 88.0 91.7 91.6 95.1 92.2
+11 from +6 Nat I LI 88.4 92.0 98.4 99.6 96.1 98.1

+11 from +6 Nat I L2 84.8 89.5 91.6 92.1 96.8 91.6

+11 from +6 Nat V Li 96.7 97.3 100.0 100.0 99.7 99.5

+11 from +6 Nat V L2 85.9 90.3 89.8 98.6 92.1 97.3

Err. (Obs-Prd) -4.2 -6.1 -5.1 -4.0

Rms Err. 6.0 6.8 6.2 3.8

+11 from +6 Syn F L3 45.0 62.1 58.2 77.8 76.6 76.1

+11 from +6 Syn F L4 63.7 77.4 85.3 91.5 91.6 89.3

+11 from +6 Syn I L3 74.9 82.5 90.9 93.9 93.9 91.0

+11 from +6 Syn I L4 84.4 86.9 91.6 97.0 93.5 79.3
+11 from +6 Syn V L3 89.2 93.4 100.0 100.0 99.0 99.8

+11 from +6 Syn V L4 99.5 99.2 100.0 100.0 100.0 100.0
Err. (Obs-Prd) -4.1 -9.8 -8.8 -5.7

Rms Err. 6.5 12.0 11.1 10.1

+6 from -1 Nat F Li 75.3 80.6 95.7 97.6 90.0 93.6

+6 from -1 Nat F L2 73.0 80.6 91.4 92.3 90.4 91.3

+6 from -1 Nat I LI 84.3 88.4 99.6 99.5 95.3 96.1

+6 from -1 Nat I L2 79.3 84.8 91.1 91.4 92.6 91.0

+6 from -1 Nat V LI 96.0 96.7 100.0 100.0 99.7 99.9

+6 from -1 Nat V L2 87.8 85.9 94.2 99.2 94.5 92.8

Err. (Obs-Prd) -9.2 -10.5 -7.6 -8.0

Rms Err. 10.2 11.0 7.8 8.9

+6 from -1 Syn F L3 36.9 45.0 43.9 67.8 61.0 53.9

+6 from -1 Syn F L4 46.1 63.7 62.7 73.5 75.0 79.3

+6 from -1 Syn I L3 66.2 74.9 87.0 92.2 91.2 87.4

+6 from -1 Syn I L4 74.4 84.4 86.3 92.9 93.5 91.2

+6 from -1 Syn V L3 90.8 89.2 100.0 100.0 99.5 99.8
+6 from -1 Syn V L4 98.9 99.5 100.0 100.0 100.0 83.3

Err. (Obs-Prd) -3.9 -11.6 -10.6 -6.4

Rms Err. 7.3 14.9 12.9 11.3

OA Err. -5.3 -9.5 -8.0 -6.0

OA Rms Err. 7.2 11.0 9.2 9.1
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Figure 3: Goldstein's multi bandpass nonlinearity model, MBPNL, [7].
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Figure 5: Simulated IHC response for open-loop (left) and closed-loop PAM (right).
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Figure 7: A block diagram of the TMC. The front-end is a filter bank with 26 critical-band channels spanning the
range of the speech spectrum. Each channel drives 100 Layer-I integrate-and-fife neurons. The parameters of all
Layer-I neurons are identical except for the threshold-of-firing All Layer-I neurons are driven by a single, global,
sub-threshold oscillatory current with a fr'equency in the gamma range. Each Layer-Il coincidence neuron is
driven by six randomly selected "patches" of Layer-I neurons.
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Figure 8: (a) Response of a single neuron to a D.C. input without a gamma oscillator. The abscissa
corresponds to time in milliseconds. Ordinate is the action-potential of the neuron. Different traces are for
different input values. When the action potential reaches threshold the neuron fires and the action-potential
resets to zero. Refractoiy time is 5mns. Time constant is 2Oms. (b) The response of an arry of neurons (differ
only in threshold-of-firing), without a gamma oscillato, to a fixed D.C. input level. Different traces are for
different neurons (c) Same as (a) with the inclusion of a gamma oscillator of frequency 25Hz. Note the
synchoiig effect of the gamma oscillator. Note also that the gamma oscillator is not a pure sinusoid. (d)
Same as (b), but with the inclusion of a gamma oscillator.
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Figure 9: (a) Response of an array of 100 Layer-I neurons to a saw-tooth input currents. The neurons
are labeled as 10 successive patches, with 10 successive neurons per patch. All the neurons were driven
by one gamma oscillatoriy current with frequency of 25Hz. Abscise is time in milliseconds. Bottom
trace shows one cycle of the gamma oscillation. Five input saw-tooth currents are shown, with different
asymmetry (symmetry coefficients are shown in the left column of the legend box). Coupled with each

input current is the action potential of all neurons which fire at the time instant corresponding to the
peak of the gamma oscillation. The patch number of these firing neurons is shown in the right column

of the legend box. Note that each saw-tooth current is mapped onto a different patch. (b) Response to a
time-compressed symmetrical saw-tooth (symmetry coefficient of 0.5). The columns of the legend box

show the time scaling factor (left) and the patch number of the firing neurons (right), respectively. Note
that input currents time-compressed to up to 40% are all mapped onto the same patch. (c) Same as in (b)
for a saw-tooth current with symmetry coefficient of 0.8. (d) Same as in (b) for a saw-tooth current with
symmetry coefficient of 0.3. Note that a fast rising saw-tooth (panel (c)) is represented with a better
precision compared to a slow rising saw-tooth (panel (d)).
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Figure 10: Performance of the TMC in the DRT task. State-I represents 40 Layer-lH neurons most sensitive to the initial
diphone of the word "daunt." Analogously, State-2 represents 140 neurons for the word "taunt." The two upper-left panels
show a spectrographic display of the front-end in response to the first 350 ms of two different realizations of the word
"daunt". Below each spectrogram is a time-histogram of the number of State-I neurons responding to the corresponding
stimulus (shown is the pertinent fraction out of 40). The lower-right four panels show the analogous display for the response
of State-2 neurons to the word "taunt". The lower-left (and the upper-right) panels show the response of the neurons to the

other word. Note the strong response to stimuli of matched tokens (and weak response to opposite tokens).
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APPENDIX A. DRT - HUMAN PERFORMANCE
A.1 Voiers' DRT
The DRT (Diagnostic Rhyme Test) version of Voiers ([17]) is a way of measuring the intelligibility of
processed speech and has been used extensively in evaluating speech coders. From an acoustic
point of view, Voiers' DRT database covers initial dyads of spoken CVCs. The database consists of
96 pairs of confusable words spoken in isolation. Words in a pair differ only in their initial
consonants. The dyads are equally distributed among 6 acoustic-phonetic distinctive features and
among 8 vowels (hence 2 word-pairs per [quadrantxfeature] cell). The feature classification
(outlined in Table A.1) follows the binary system suggested by Jakobson, Fant and Halle
(Jakobson et al., [13]), and the vowels are [ee] and [it] (High-Front), [eh] and [at] (High-Back), [oo]
and [oh] (Low-Front) and [aw] and [ah] (Low-Back). In our version of the DRT the vowels are
collapsed into 4 quadrants (High-Front, High-Back, Low-Front, Low-Back), hence 4 word-pairs per
a [quadrantxfeature] cell.

The psychophysical procedure is carefully controlled to assure a task with minimum cognitive
load. The listeners are well trained and are very familiar with the database, including the voice
quality of the individual speakers. The experiment uses a one-interval two-alternative forced-choice
paradigm. First, the subject is presented visually with a pair of rhymed words. Then, one word of
the pair (selected at random) is presented aurally and the subject is required to indicate which of
the two words was played. This procedure is repeated until all the words in the database have
been presented. In our version of the DRT words are played sequentially, one every 2.5 - 3
seconds; the visual presentation precedes the aural presentation by 1sec., and the decision
(binary) must be made within 1sec of the aural presentation. Words in the database are divided
into "runs", and the duration of one run is limited to about 2.5 minutes (to avoid fatigue).

The scores of one complete DRT-session will be tabulated with a cell granularity of
[quadrantxfeature], as illustrated in Table A.2. A table-entry contains the number of words per cell
that where mistakenly identified; it is an integer between 0 and 4, since the total number of words
per cell is 4.

Our knowledge about the acoustic correlates of the Jakobsonian dimensions (Table A.3)
provides diagnostic information about temporal representation of speech, while the vowel quadrant
identity provides information about the frequency range (i.e. location of the formants in action).
Hence, the integrated information can link phonetic confusions with their origin in the time-
frequency plane. We shall utilize the usage of such linkage to guide the procedure of tuning the
parameters of the auditory model.

A.2 Experiments
We conducted a formal DRT test in quiet and in noise using speech-shape noise at three SPL
intensities (70, 60 and 50dB) and at three SNRs (10, 5 and 0dB). We have measured the human
performance for the synthetic DRT stimuli and for the naturally spoken DRT stimuli to test the
extent to which the usage of synthetic stimuli in the presence of noise worsens human
performance1 . Figure A.1 shows the human performance for naturally spoken stimuli. The figure is
structured as a 3x3 matrix with the rows and columns representing SNR and SPL (in dB),
respectively. Each panel shows the error distribution, in percent, over the six Jakobsonian
dimensions: "VC" is for Voicing, "NS" for Nasality, "ST" for Sustention, "SB" for Sibilation, "GV" for
Graveness and "CM" for Compactness. The "+" sign stands for attribute present and the "-" sign
for attribute absent. The ordinate is termed "Error', and it represents the percentage of words in
the category that, when played to the listener, were judged to be the opposite word in the word pair
(i.e., the listener switched to the opposite category). The data is collected from six subjects, all
students with normal hearing. Using the same format, figure A.2 shows the human performance for
synthetic speech stimuli.

All subjects have zero errors for speech in quiet.
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Few observations should be noted. First, the grand-mean errors for synthetic speech stimuli is
higher (roughly 4 percentage points). Second, at all SNR levels performance is hardly affected by
changes in SPL. As for comparing the error distribution along the Jakobsonian dimensions, the
error patterns are reasonably similar over the ST, SB, GV and CM dimensions but are markedly
different along VC and NS. (This observation is illustrated in Figure A.3 which shows a linear
relationship between synthetic speech scores and naturally spoken speech scores for the ST, SB,
GV and CM dimensions, but not for VC and NS.) Compared to naturally spoken stimuli, synthetic
speech stimuli are easier to be distinguished for Nasality but are harder to be discriminated for
Voicing. Furthermore, the asymmetry in errors between the "+" and "-" attributes of VC is in
opposite direction. We assume that these differences reflect a failure of the speech synthesizer to
generate appropriate acoustic representation of supra-segmental cues (e.g. prosody). We suggest
that confusions due to misrepresentation of supra-segmental cues are marginally affected by
peripheral processing. Hence, we will proceed with using synthetic speech to tune the PAM.
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Table A.1. Samples of word-pairs used in Voiers' DRT (1983).

vel-fepeat - beat vee - bee

jt-gtwad_ - rod got - dot

Table A.2. A sample of the outcome of one DRT session, one stimulus condition, and one subject. A table-entry
contains the number of words per [quadrantxfeature] bin mistakenly identified (an integer between 0 and 4).

VC N~S ST< SB GV CM

High-Front 00 11 0 4 222 1 11
Hlg-Back 1 1 2 0 2 1 1 0 1 3 0 0

Low-Front 1 0 0 0 1 3 0 1 1 4 1 1

Low-Back 1 1 1 1 3 4 2 3 3 2 1 0

Table A.3. The Jakobsonian dimensions and their acoustical correlates

Voicing - Periodicity and shorter time of onset duration (Voiced)

- Discriminability - at [0, 1000] Hz

Nasality - Formants at 200, 800 and 2200-Hz
- Nulls throughout the frequency range (Nasals)
- Discriminability - at [0, 1000] Hz

Sustntlon - Gradual onset and presence of mid-frequency noise (Sustained)
- Durational and high-frequency cues

Sb o - Higher-frequency noise and greater duration (Sibilant)
- Duration is most important acoustical correlate

Graveness - Origin and direction of second-formant transitions
- Grave consonants - steep upward transitions
- Acute consonants - downward second-formant transitions

- Greater concentration of low-frequency energy (Grave)

Cmpactness - Concentration of spectral energy at mid-frequency range (Compact)
More-widely separated spectral peaks (Diffused)
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Figure A.I: Human performance on Voiers' 2AFC DRT task using naturally spoken speech. Performance is broken down
into DRT dimensions having the attributes of voicing (VC), nasality (NS), sustension (ST), sibilation (SB), graveness (GV),
and compactness (CM). + indiciates diphones that have the attribute. - indicates diphones that do not have the attribute. The
grand mean is computed by averaging the percent correct over all dimensions and +/- attributes. As SNR decreases, human
performance decreases. Human errors moderately decrease as SPL is decreased.
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Figure A.2: Human performance on Voiers' 2AFC DRT task using synthetic speech created by the HLsyn speech synthesis
system. Performance is broken down into DRT dimensions having the attributes of voicing (VC), nasality (NS), sustension (ST),
sibilation (SB), graveness (GV), and compactness (CM). + indiciates diphones that have the attribute. - indicates diphones that
do not have the attribute. The grand mean is computed by averaging the percent correct over all dimensions and +/- attributes. As

SNR decreases, human performance decreases. Human errors moderately decrease as SPL is decreased for all conditions but the
OdbSNR cases.
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Correlation of Natural and Synthetic Speech DRT Error Rates
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Figure A.3: Correlation of Human and Synthetic Error Rates. Scores are averaged across 6 subjects. Each mark
corresponds to the average subject score for a particular Jacobsonian dimension (Voicing, Nasality, Sustension, Sibilation,
Graveness, and Compactness) in a particular noise level condition (the conditions examined were noise levels of 70, 60,
and 5OdBSPL with speech at 10, 5, and 0 dBSNR). The grey dashed line corresponds to an equal error rate between
synthetic and natural scores. The voicing and sustension categories in particular are biased towards more synthetic errors.
Nasality-plus is biased towards more natural speech errors. The rest of the dimensions (nasality-minus, sibilation,
graveness, and compactness) have nearly equal error rates corresponding to a good correlation between synthetic and
human error rates.
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APPENDIX B. PHONE IDENTIFICATION - HUMAN PERFORMANCE
This experiment examined the consonant confusion patterns of normal-hearing subjects listening
to synthetically-produced or naturally-produced consonant-vowel consonants (CVC) under various
noise levels, signal-to-noise ratios and filtering conditions.

Speech materials
Naturally-produced speech. The consonant-vowel-consonant (CVC) database is composed of 864
CVC syllables, each preceded by the unstressed schwa vowel /a/. The materials were recorded by
one male and one female talker, each of whom produced half of the CVC tokens. The syllables
were constructed using 12 consonants and 6 vowels. The consonants were /p, t, k, b, d, g, e, v, 8,

s, f, z/ and the vowels were /i, a, u, i, E, u/. Out of a total of 864 possible CVC syllables, 840
syllables were selected for the experiment. One half of the syllables were produced by a male
talker and the other half by a female talker. The mean durations of the tokens spoken by each of
the two talkers were 634 (M) and 574 (F) ms.

Synthetically-produced speech: The database for the synthetically-produced speech was the
same database as was used with the naturally-produced speech. The CVC words were
synthesized with the help of Ed Bruckert using HLSyn, a modification of the Klatt synthesizer that
was developed by Sensimetrics Corporation. As in the naturally spoken corpus, the syllables for
the synthetic corpus were constructed using the same 12 initial consonants, 6 vowels and 12 final
consonants.

Subjects
A total of 9 subjects started the experiment. Four left the experiment before completion due to time
constraints and one subject's data was eliminated because the procedure for collecting the data
was changed during the course of the time that she was participating in the study.

Of the 4 people who completed the experiment, 3 were female and 1 was male. All had clinically
normal hearing and were native speakers of American English. Two subjects were tested with the
naturally-produced speech and two subjects were tested with the synthetically-produced speech.

Conditions
The CVCs were presented in speech-shaped noise at three levels (50 dB, 60 dB and 70 dB SPL)
and at three signal-to-noise ratios (-1, 5 and 11 dB) for a total of 9 conditions.

In addition, low-pass (0-2100 Hz) and high-pass (2100-4500 Hz) filtered speech conditions were
tested with one noise level (60dB SPL) and one signal-to-noise ratio (5 dB). The low-pass or high-
pass filtering was applied to the CVC and the speech-shaped was then added to the filtered signal.

Test Procedures
Two subjects were tested with the naturally-produced stimuli and two subjects were tested with
synthetically-produced stimuli. Otherwise all testing was the same for the 4 subjects.

Subjects were seated in front of a computer terminal in a soundproof booth and listened to the
speech materials binaurally under Sennheiser HD580 headphones. On the first visit, each subject
was given a pure tone hearing test to document normal hearing.

During testing, the listeners knew the constraints of the database (e.g., that whatever token was
chosen from the CVC database, it would begin with the unstressed schwa vowel /a/ and be
followed by a Consonant-Vowel-Consonant sequence, where each of the consonants would be
one of 12 possible, and each of the vowels would be one of six possible). A copy of the computer
graphical user interface (GUI) is shown in Figure 1. Complete testing for each subject consisted of
roughly 23 2-hour visits to our lab.
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The order of testing was as follows:
(1) Pre-training session(s) - Pre-training consisted of one set of 840 CVCs in quiet without correct-

answer feedback. This test served as the baseline (for error patterns) for each subject and to
familiarize the subjects with the test procedure.

(2) Training session(s) - Subjects listened to a randomized set of 840 CVCs in quiet with correct-
answer feedback.

(3) Post-training sessions - A noise level (50 dB, 60 dB or 70 dB SPL) was chosen at random.
Within the chosen noise level, one set of 840 CVCs was presented at each of the 3 SNRs. The
same procedure was followed for the remaining noise levels. No correct-answer feedback was
provided during these sessions.

(4) Filtered CVCs - For the low-pass and high-pass filtered speech conditions, data was collected
with one noise level (60 dB SPL) and one SNR (5 dB). For each of the filtered conditions,
subjects listened to a set of 840 CVCs with correct-answer feedback as training before the test
condition. The test condition consisted of one set of 840 CVCs
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Figure B.I: Graphical User Interface (GUI) used for subject responses in the psychophysical experiment.
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